References

This is the class and function reference of the package.

random_output_trees.ensemble: Ensemble

This module provides ensemble estimators which work transformed output-space.

ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.LazyBaggingClassifier([...]) A lazy bagging classifier.
ensemble.LazyBaggingRegressor([...]) A lazy bagging regressor.
ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.

random_output_trees.datasets: Datasets

Module for datasets loading and fetchers.

datasets.fetch_drug_interaction([data_home]) Fetch the drug-interaction dataset
datasets.fetch_protein_interaction([data_home]) Fetch the protein-interaction dataset

random_output_trees.random_projection: Random projection

This module provides dimensionality reduction methods based on random projection.

random_projection.RademacherRandomProjection([...]) Rademacher random projection
random_projection.AchlioptasRandomProjection([...]) Sparse random projection using Achlioptas random matrix
random_projection.SampledHadamardProjection([...]) Subsample Hadamard random projection
random_projection.SampledIdentityProjection([...]) Subsample identity matrix projection

random_output_trees.transformer: Transformer

This module provides general purpose meta-transformer.

transformer.FixedStateTransformer(transformer) Fixe the random_state of the transformer

random_output_trees.tree: Tree

This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled.

This module also provides tree-based estimators which worked transform output-space.

tree.DecisionTreeClassifier([criterion, ...]) A decision tree classifier.
tree.DecisionTreeRegressor([criterion, ...]) A decision tree regressor.