A lazy bagging regressor.
Everything is done lazily, models are built at prediction time and are not kept in memory. Since the models is thrown away, this allows to highly reduce the memory consumption and allows to build very large ensemble.
Parameters: | base_estimator : object or None, optional (default=None)
n_estimators : int, optional (default=10)
max_samples : int or float, optional (default=1.0)
max_features : int or float, optional (default=1.0)
bootstrap : boolean, optional (default=True)
bootstrap_features : boolean, optional (default=False)
random_state : int, RandomState instance or None, optional (default=None)
verbose : int, optional (default=0)
|
---|
References
[R9] | L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning, 36(1), 85-103, 1999. |
[R10] | L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996. |
[R11] | T. Ho, “The random subspace method for constructing decision forests”, Pattern Analysis and Machine Intelligence, 20(8), 832-844, 1998. |
[R12] | G. Louppe and P. Geurts, “Ensembles on Random Patches”, Machine Learning and Knowledge Discovery in Databases, 346-361, 2012. |
Attributes
n_features_ | int, | Number of features of the fitted input matrix |
n_outputs_ | int, | Number of outputs of the fitted ouput matrix |
Methods
fit(X, y[, sample_weight]) | Build a lazy a bagging ensemble of estimators from the training set |
get_params([deep]) | Get parameters for this estimator. |
predict(X) | Predict regression target for X. |
score(X, y[, sample_weight]) | Returns the coefficient of determination R^2 of the prediction. |
set_params(**params) | Set the parameters of this estimator. |
Build a lazy a bagging ensemble of estimators from the training set
Parameters: | X : {array-like, sparse matrix} of shape = [n_samples, n_features]
y : array-like, shape = [n_samples]
sample_weight : array-like, shape = [n_samples] or None
|
---|---|
Returns: | self : object
|
Get parameters for this estimator.
Parameters: | deep: boolean, optional :
|
---|---|
Returns: | params : mapping of string to any
|
Predict regression target for X.
The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble.
Parameters: | X : {array-like, sparse matrix} of shape = [n_samples, n_features]
|
---|---|
Returns: | y : array of shape = [n_samples] or [n_samples, n_outputs]
|
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
Parameters: | X : array-like, shape = (n_samples, n_features)
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
sample_weight : array-like, shape = [n_samples], optional
|
---|---|
Returns: | score : float
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: | self : |
---|