Rademacher random projection
The components of the random matrix are drawn from:
- -sqrt(s) / sqrt(n_components) with probability 1 / 2
- +sqrt(s) / sqrt(n_components) with probability 1 / 2
Parameters: | n_components : int or ‘auto’, optional (default = ‘auto’)
eps : strictly positive float, optional (default=0.1)
random_state : integer, RandomState instance or None (default=None)
|
---|
Attributes
n_component_ | int | Concrete number of components computed when n_components=”auto”. |
components_ | numpy array of shape [n_components, n_features] | Random matrix used for the projection. |
Methods
fit(X[, y]) | Generate a sparse random projection matrix |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
set_params(**params) | Set the parameters of this estimator. |
transform(X[, y]) | Project the data by using matrix product with the random matrix |
Generate a sparse random projection matrix
Parameters: | X : numpy array or scipy.sparse of shape [n_samples, n_features]
y : is not used: placeholder to allow for usage in a Pipeline. |
---|---|
Returns: | self : |
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
Parameters: | deep: boolean, optional :
|
---|---|
Returns: | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: | self : |
---|
Project the data by using matrix product with the random matrix
Parameters: | X : numpy array or scipy.sparse of shape [n_samples, n_features]
y : is not used: placeholder to allow for usage in a Pipeline. |
---|---|
Returns: | X_new : numpy array or scipy sparse of shape [n_samples, n_components]
|